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Transient  magnetohydrodynamic dis turbances  of fiat s t r eams  of a highly conductive, non- 
viscous,  thermal ly  nonconductive, quasineutral  plasma in a channel of slowly varying cross  
section with sectioned e lec t rodes  are  analyzed in a l inear approximation. The influence of 
the Halt effect  is taken into account in the analysis.  It is shown that the evolution of a d is -  
turbance in the isomagnet ic  pa r ame te r  B / p  is comprised of t ranspor t  along the channel to-  
gether with the p lasma s t ream,  t ranspor t  along the undisturbed electron t ra jec tor ies ,  and 
diffusion due to the finite conductance of the plasma. The time of establishment of the flow 
is equal to the t ime of flight of the plasma through the channel (the region occupied by the 
magnetic field). The presen t  repor t  is a generalization of the analysis of steady d is tur -  
bances conducted in [1]. 

1. A considerable number  of works have been devoted to t ransient  flows of a plasma.  This is ex- 
plained by the necess i ty  of the analysis  of p rocesses  of plasma accelera t ion in pulsed sys tems,  the c la r i -  
fication of the ]possibility of establishing flows in s teady-s ta te  acce le ra to r s ,  and the analysis  of problems 
of the stability of steady flows. We shall consider  low-frequency t rans ient  p rocesses  which do not disturb 
the quasineutral i ty  of the p lasma and are  subject to a hydrodynamic description.  

The analysis  of t ransient  flows has been per formed by different authors without allowance for the 
influence of the Hall effect on the flow. The t rans ient  one-dimensional  accelera t ion of a p lasma vAth a 
constant conductance was analyzed in [2]. It was shown that allowance for the three-dimensional  d is t r ibu-  
tion of the e lec t r ic  cur ren t  leads to a flow which differs s trongly f rom that calculated on the basis  of the 
model of a cur ren t  layer .  With slow variat ion in the charac te r i s t i cs  of the discharge the effect of the ini-  
tial conditions on the flow is important  for  t imes  shor te r  than the time of flight of the plasma through the 
channel. 

The authors of [3], in which a numerical  calculation was made of the two-dimensional  flows of a 
p lasma with a constant conductance without allowance for the Hall effect, came to an analogous conclusion 
concerning the establ ishment  of flows in a t ime on the order  of the t ime of flight of the plasma through the 
channel. If the t r ans f e r  coefficients of the plasma depend on the tempera ture ,  then the situation can change: 
short-wavelength hydrodynamic oscil lat ions in a p lasma s t r eam can prove to be unstable. 

A nonlinear numerica l  calculation of the one-dimensional accelerat ion of a p lasma per formed in [4] 
shows that if  the conductance of the p lasma inc reases  with an increase  in tempera ture ,  then the initial con- 
ditions have a considerable effect on the nature of the flow. If the cur rent  is initially distributed in a na r -  
row layer ,  then a se l f -susta ining cu r ren t  T - l a y e r  with high conductance and tempera ture  develops as a 
resu l t  of the heating of the p lasma by the current .  Two shock waves propagate f rom the site of formation 
of the T- laye r ;  the wave moving toward the channel entrance can, by heating the plasma,  cause the fo rma-  
tion of a second T- l aye r ,  and so forth. As a resul t  the discharge cur ren t  is concentrated in several  T-  
layers ,  and the acce lera t ing  plasma is distr ibuted along the channel in the form of c lus ters  following one 
after  another.  
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Making allowance for  the tIal l  ef fect  can a l so  lead to the loss  of  
s tabi l i ty  of p l a s m a  flows. A numer ica l  calculat ion of two-dimens iona l  
flows with al lowance for  the Hall  effeet  [5] showed that  during flow in 
a channel with continuous meta l  wal ls  - t h e  e lec t rodes  - s tabi l i ty  i s  
lost  when the exchange p a r a m e t e r  [6] exceeds  a c r i t ica l  value which 
depends on the ra t io  of the gaskinet ic  and magnet ic  p r e s s u r e s  and on 
the magnet ic  Reynolds number .  A theore t ica l  ana lys i s  of the s tabi l i ty  
of shor t -wavelength  osci l la t ions  in Halt  flows [7] p red ic t s  the in s t a -  
bili ty of flows of a pe r fec t ly  conductive p l a s m a  i f  there  exis t  regions  
in which the vec to r s  of the densi ty  and the total  p r e s s u r e  (gaskinet ic  
and magnet ic)  of the p l a s m a  a re  not para l le l .  

The purpose  of the p r e s e n t  r e p o r t  is  the genera l iza t ion  to the case  of t r ans i en t  d i s tu rbances  of the 
analys is  of s teady weakly d is turbed Hall f lows of a p l a s m a  in a channel with sect ioned e lec t rodes  which 
was p e r f o r m e d  e a r l i e r i n  [1]. The d i s tu rbances  cons idered  in [1] were  due to the s l ight  imper fec t ion  in 
the cutting of the e lec t rodes  and cons iderab ly  a l t e red  the flow pa t te rn  in the p r e sence  of a s t rongly  ex-  
p r e s s e d  Hall  effect ,  t t  i s  in te res t ing  to examine  the case  in which, in addition to the d i s tu rbances  caused 
by the imper fec t ion  in the cutting, the re  exis t  d i s tu rbances  caused by t r ans ien t  i r r e g u l a r i t i e s  at  the en-  
t rance  to the channel. This  is  poss ib le ,  fo r  example ,  when the re  a r e  sl ight  deviat ions in the mode of sup-  
ply  of the working substance.  

Let  us cons ider  a f la t  p l a s m a  flow in an infinitely long channel in the p r e sence  of an in t r ins ic  (pro-  
duced by the d i scharge  current)  t r a n s v e r s e  magne t ic  field B (Fig. i ) .  The vec to r  B is  or iented  along the 
z axis ,  while the vec to r s  of the p l a s m a  veloci ty  v, the e l ec t r i c  field s t rength  E, and the e l ec t r i c  cur ren t  
densi ty  j a r e  located in the xy plane. ALl the p a r a m e t e r s  of the flow depend on the coordinates  x and y and 
the t ime  t; the width of the channel in the di rect ion of the z axis  is  cons idered  as  infinite. We will analyze 
the flow of a fully ionized, quas ineutra l ,  nonviscous,  and t h e r m a l l y  noneonductive p la sma .  We will a s s u m e  
the conductance a of the p l a s m a  to be constant,  and we will neglect  the ine r t i a  of the e lec t rons .  With these  
assumpt ions  the flow is  desc r ibed  by the following s y s t e m  of equations: 

(0 ) p - -~+  v V v = - - v P ,  ~ +  d i v p v = O  (1,1) 

: __ M p 
J~ - - E +  "c X B + T ( V  --vp~) 

B :~ I OB 4a 
P = P~ + P" + E~' rot E -- c or' rot B- -  --c j 

div B = O, P~ = Pi (P), P~, = Pe (P). 

Here  p is  the p l a s m a  density,  and Pi,e a r e  the gaskinet ic  par t ia l  p r e s s u r e s  of the ion and e lec t ron  
components  of the p l a sma ,  which we a s s u m e  to be poly t ropica l ly  dependent on the densi ty p. 

Let  us cons ider  a channel of s lowly va ry ing  c ro s s  sect ion,  in which the following conditions a r e  
satisfied: 

We will a s s u m e  that the magne t ic  Reynolds number  Re m is  l a rge ,  

Re,, --uL/v~>7> l (v,,, = c~ / 4 ~ ) ,  (1.3) 

where  u is  the cha rac t e r i s t i c  longitudinal ve loci ty  of the p l a sma ,  L is  the cha r ac t e r i s t i c  longitudinal sca le  
of the length in which the flow p a r a m e t e r s  v a r y  significantly,  and v m i s  the magnet ic  v i scos i ty  of the p la sma .  

Let  us a s s um e  that  the radius  of curva tu re  r of the p l a sma  s t r e a m l i n e s  Y0(t, x), which a r e  de te rmined  
by the equation 

8yo/OX~-Vy/vx, (1.4) 

is  l a rge  compa red  with the ionic L a r m o r  radius  A, 

r>>A (A=-Mcv:, /eB).  (1.5) 

When the conditions (1.2), (1.3), and (1.5) a r e  sa t i s f ied  one can neglec t  the t r a n s v e r s e  eomponent  
(along the y axis) in the f i r s t  equation of (1.1), as  well  as  the t e r m s  jy/cr and (M/ep) (0P/0y) ,  in c o m p a r i -  
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son with the Lorentz ian t e r m  vxB/c  in the y-component  of the third equation of (1.1). 
approximation we obtain the following sys tem of equations in place of (1.1): 

Consequently, in this 

( 0  ) op(t,x) OO (1.6) 
p + v  V v~= Ox ' "-~ +d ivpv-~O 

~o~ o,,B M (oe opAo) 1 
- /-  -~-~ = Ex + --~-- + -/p- \ ~ oz ] 

0 = Ey  o:,B M dPl (P) 
c ep d y  

B~ 
P (t, x) = p, (O) + P- (P) + ~- ,  

dE.,: dE. I OB 
Oy Ox c Ot " 

Differentiat ing the third equation of (1.6) with respec t  to y and using the second, fourth, and sixth 
equations of (1.6), we find 

%,02B O ( O ) B M OP Op 
c Ov 2 c - ~ - - v v  - ~ - - - - -  (1.7) 

F o r  a perfec t ly  conductive p lasma without allowance for the Hall effect i t  follows f rom (1.7) that 

d B = 0  ' 
dt p 

i .e . ,  the fact that  the magnetic field is  "frozen" into the plasma. 

Let us consider  small  t rans ient  dis turbances in the main steady quasi -one-dimensional  flow of a 
p lasma in a channel with sectioned e lect rodes .  We will take the width of the sections as infinitely small .  
The pa rame te r s  of the undisturbed flow (denoted by the subscr ipt  0) are  descr ibed by the equations 

(1.8) 80 ~ k. M i dp~ (~o) 
Po (z) = po (p) + ~-~-, % = %0 (z) - -  T era- - -  - ~ -  "~T 

d~oo__ M dP o 
B--2-o - ~  k 0 = const, e Po + "~" %0 (x) = const, dz epo dx 

E o = - - V g o ,  B o = B  o(x), 0o=P0(x),v o = v  o(x) 
PoVo/= m" = const. 

Here v 0 is the x-component  of the velocity v0, f(x) is the width of the channel, and m" is the mass  
flow rate pe r  second of the working substance (the plasma). The normal ized s t ream function r is  de ter -  
mined by the equation 

= PoVo [Y - -  Yk (x)l/m', (1.9) 

where Yk(X) is the profile of the channel cathode, so that r = 0 at the cathode and r = 1 at the anode. 

Let  us change f rom the var iables  t, x, y to the var iables  t, x, ~. By l inearizing the f i rs t  and fifth 
equations of (1.6) we find 

[ o%~ 0 ) 0~o OPl 
P~ ~f - + O-xx v~ + 9iV~ 0--~- = -- 0"-)- (I.i0) 

Pl (t, X) Z = Crpl + BoBt/4~ (@ = dpo/dpo). (1.11) 

F r o m  the second equation of (1.6) it follows that 

Opi/at + div (pivo q- povl) = 0. 

A dis turbance in the isomagnet ic  pa r ame te r  k = B / p  will be defined as  k I. Then we have 

B~ - - k  
kl = -~o o P0 " 

(i.12) 

(1.13) 

(1.14) 

F r o m  ( i . i i )  ~ud (1.13) we obtain 

9~ 
Pt/Po = Pl/poCH - -  kx/ko (CA/C~) ~" 

B J B  o = Pt/poc2ul + kt/ko (CT/CH) 2 
2 2' CH 2 = CT 2 + CA, C.~ 2 ~ Bo /4npo. 
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By l inear iz ing  Eq. (1.7) and using (1.14) we can find an equation desc r ib ing  the evolution of the d i s -  
tu rbance  in the i somagne t ic  p a r a m e t e r :  

(1.15) O'-kl i Okt Oki Ok1 
Or ---- -0~01) - ~ -t- ~ + a (rt) -b- ~- 

Q = \ ,  Polo i ' c r~  2 du 
m. (1.16) 

= 7 7. - t 0  

Equation (1.15) is  a genera l iza t ion  to the t r ans i en t  case  of the s t eady - s t a t e  equation obtained in [1]. 

2. Let  us a n a l y z e  the evolution of smal l  d i s tu rbances  in the i somagne t i c  p a r a m e t e r .  Changing f r o m  
the va r i ab l e s  t, T/, r to the  va r i ab l e s  0, ~?, r where  8 is  de t e rmined  by the equation 

o = , _ f  d: (2.1) . ~ - ~ ( ~ )  

(we a s s u m e  that at  the channel en t rance ,  i .e . ,  a t  x =x00, the veloci ty  v 0 is  d i f ferent  f r o m  zero ,  so that  0 is  
finite eve rywhere ) ,  we obtain 

O~"kl akl Ok, 
d, ~" = 0-~ § a (~l) b~-r (2.2) 

The var iab le  0 en te rs  into Eq. (2.2) as  a p a r a m e t e r .  F r o m  this and f r o m  the definition (2.1) i t  fo l -  
lows that a t r ans i en t  d is turbance  k 1 is  c a r r i e d  along the channel by the p l a s m a  s t r e a m .  If the e lec t ron 
s t r e a m  function @e is  in t roduced by the equations 

v~0 ~ Vo-- Mjo/ePo, PoV~0 ~ m ' v ~ X n z  (2.3) 

(n z is  the unit vec to r  in the direct ion of the z axis) ,  so that  

B o = 4~em ( * - -  r  

then one can a s c e r t a i n  that  the ope ra to r  O/OTl+aO/O r on the r ight  side of (2.2) co r r e sponds  to the d i f fe r -  
entiation ope ra to r  along an undis turbed e lec t ron  t r a j e c t o r y  @e = const.  With a pe r fec t ly  conductive p l a sma  
( a - - %  Vm--0)  we obtain 

kx=k~(0, ~P~)- (2.4) 

The left  side of Eq. (2.2) d e s c r i b e s  the diffusion due to the finite conductance of the p l a sma .  The 
evolution of the d is turbance  k 1 is  compr i sed  of t r a n s p o r t  together  with the p l a s m a  s t r e a m ,  t r a n s p o r t  along 
the undis turbed e lec t ron  t r a j e c t o r i e s ,  and diffusion due to the finite conductance of the p la sma .  

Equation (2.2) with a =a 0 = const  was  analyzed in [1], where  it  was shown that  in the c~se of weak in -  
fluence of the Hall effect  ( a - - 0 )  the d i s tu rbances  pene t ra te  f r o m  the e l ec t rodes  into the s t r e a m  like a skin 
(the th ickness  of the skin l a y e r s  is  de t e rmined  by the diffusion of the p l a s m a  in the magnet ic  field); in the 
case  of a s t rongly  e x p r e s s e d  Hall  ef fect  ( a - -  oo) the function k 1 has the f o r m  

kl  ~ gl (0, 'q - -  */ao) d- g~ (0, rl .-b , /ao)  exp (act). (2.5) 

The dependence (2.5) s ignif ies  that  the d i s tu rbances  a r e  t r a n s p o r t e d  along the e lec t ron  t r a j e c t o r i e s  
f rom the cathode to the anode and an e l ec t romagne t i c  l a y e r  is  fo rmed  n e a r  the anode. 

3. Let  us examine the in tegra l  equations.  By in tegra t ing  (1.10) with r e spec t  to r f r o m  0 to 1 we ob-  
tain the f i r s t  in tegra l  equation 

( o ,,., (3.1) 

F r o m  the continuity equation (1.12) we find 

- -  : v 0 p ~  + Ovi= PoV0u avl~  . v t=  dpo] (3.2) 

At the channel wails  y = y_ (x) (@ = 0) and y = y+ (x) (@ = 1) the following conditions a r e  sat isf ied:  

16 



vv]r Vx]r  (3.3) 
v,~lr = v:~lr 

By i n t e g r a t i n g  (3.2) with r e s p e c t  to  r f r o m  0 to 1, us ing  (3.3) and the equal i ty  

0 PoVoy I dpo % 

O* m" Po% dx ' 

we obtain the second  in t eg ra l  equat ion 

(+ ),' U .~0  l U o 01 d~)+ t " d ~ = 0 .  (3.4) 
"k- Vo ~ .I 9o o Ox ,. % 

0 0 

Subst i tut ing the value P l / P o  into (3.1) and (3.4), f r o m  (1.14) we have 

/ C ~ .  \ 2  

�9 o " 

Equat ions  (3.5) m a k e  i t  poss ib l e  to obtain an equat ion connect ing  a d i s tu rbance  P1 and the value 
l 
t k~dr  . ff  the l a t t e r  is  known then Pi t t ,  x) is  d e t e r m i n e d  f r o m  the equat ion obtained.  
0 

4. Le t  us c o n s i d e r  f u r t h e r  the exac t  solut ion and the u l t r a - H a l l  mode .  The s teady  d i s t u r b a n c e s  
a n a l y z e d  in [1] sa t i s fy  the equa t ions  

,, ~'0 ] 
0 

i I OPa 2 O e %~ dvo %" d ~  + -~o-b-Z = O. 
V o -ci-~ J - T  d r + v o -~;~ . , ~'-7 . 

0 

We will  a s s u m e  tha t  the sec t ions  a r e  weakly  s h o r t - c i r c u i t e d  th rough  p u r e l y  ohmic  r e s i s t a n c e s  and 
tha t  the c u r r e n t  th rough  each  r e s p e c t i v e  p a i r  of sec t ions  ( a n o d e - c a t h o d e )  is  cons tan t  and does not  v a r y  
with t ime .  In [1] i t  is  shown that  in  this  e a s e  a d i s t u rbance  B i in the magne t i c  f ield at  the e l e c t r o d e s  is  
s t a t i ona ry .  Since the t r a n s i e n t  p r o b l e m  is  s e p a r a t e d  f r o m  the s t e a d y - s t a t e  p r o b l e m ,  one can, without,  d i s -  
tu rb ing  the gene ra l i t y  of  the ana lys i s ,  confine onese l f  to the cons ide ra t ion  of p u r e l y  t r a n s i e n t  d i s t u r b a n c e s ;  
in this  ease  the d i s t u r b a n c e  B i i s  r e d u c e d  to z e r o  at  the e l e c t r o d e s .  The condit ions on the function kt(t  , 
~, r have the f o r m  

k z (t, ~loo, 4)  = g](t, xp), k 1 (o, ~l, t~) = k (~ (~1, ~) (4.2) 
/,.~ (t, ,I, 0) = k 1 (t, ~, t) = --k0P ~ (t, ~)lPoc~. 

Le t  us d i s c u s s  the c a s e  when k (~ (U, r  0. In this ca se  g(0, $ ) = 0  and Pl(0, ~?) =0.  As the und i s tu rbed  
flow we choose  the case  of  exponent ia l  f lew a =a  0 = cons t  ana lyzed  in [1]. I ts  p a r a m e t e r s  have the f o r m  

i 2, 2 ~ ( 4 . 3 )  v o ~ vm th (x /L) ,  9o ~ PO (0) t i vO ~Vm) ' BO = ko90 

~ aO~l~ = M c l B o  (O)l /4aem' ,  h = ~1,~ th2 (x /L)  

v.~ = IBo (O)l [2~9o (0)1-',':~, c 2 = const ~ c~ 

. f (x)--  3]7~-sh(x/L) ' n , o - -  4 1, ~ / , ,  ~ , 

e,)T-- M(yIBn[ const x > xo0 > 0 ,  
ep0c 

~o ( o )  - ,% ( X o o )  [1 - -  Vo 2 (Xoo)iv,~ z] - ' ,  

B o (0) = kop o (0). 

H e r e  r is the Hall  p a r a m e t e r ,  ~ is  the exchange  pa rame te l : ,  and f* is  the width of  the channel  at  the 
c r i t i ca l  (v0= CA) c r o s s  sec t ion .  The t r u e  exchange  p a r a m e t e r  ~ = I d / I  m is  d e t e r m i n e d  by the e x p r e s s i o n  

=MClB~(x00)[/4vem , i . e . ,  when v0(x00)<< v m i t  d i f fe r s  l i t t le  f r o m  the e x p r e s s i o n  p r e s e n t e d  in (4.3). Since 
~oo does  not  depend on the Hal l  p a r a m e t e r ,  l a r g e  va lues  of ~ c o r r e s p o n d  to l a rge  va lues  a 0 = 2. The a s -  
sumpt ion  tha t  c ~  << e~k is  o b s e r v e d  when 
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0 ~ ~]/~l~ < ll,n/ll~ : t 2Cr2/ym 2. (4.45 

Since we a re  a s suming  that  the veloci ty  a t  the channel en t rance  d i f fe rs  f r o m  zero,  in Eqs. (4.3) one 
m u s t  se t  x---x00 - 0, i .e . ,  ~ ->~?00> 0, where  values  a t  the channel en t rance  a r e  denoted by the subsc r ip t  00. 

When k (~ (7, r = 0 the solution of Eq. (1.15) with the conditions (4.2) has the f o r m  

Here  

~ = _ ~o ,"1 (o, ,loo) / % -  ~ ~ i 
~0(~oo) ~r + ~xp (-~ ~ -  T ~ )  d ,  • 

o F (0, 9) exp ~t + + a ( n - - ~  i - - r  

[ ( a4)] [ q 2 ~ exp 010o--~l) ~eneq s i n n n , ( g ( 0 , ~ )  k 

+ ko ~o (~--~o)%-~J ~ P  - " 

cr 
G0],*) .... ~ 4- 2 v (--  t)~, s'n ~n* exp (--~2n-~) 

.'In 

F(0, ~t) =: ~k~ Pl(0,~loo)po(noo) - -P i  0 + .i dv/g](v),~t [po(~t)l -~ 
~q :o / 

( 4 . 5 )  

and the functions g( 0, r and P l ( 0 , 7 )  a r e  reduced  to ze ro  when 0 -  < 0. I t  follows f rom (4.55 that  the influ-  
ence of the conditions at the channel en t rance  on the na ture  of the solution is  impor tan t  only when 0 <  ~ -  
~oo~ ( ~  + a02/4) -~ �9 At a given 0 the function k 1 i s  essen t ia l ly  two-dimens iona l ,  i .e . ,  i t  depends on ~ and r 
One would think that  i f  [g(0, ~b) = -k0P~(0, ~?005/P00?00) c~, then a solution k 1 = -k0Pl(0 ,  ~00)/P0 �9 (~00) CT 2 would 
exist ,  but in th is  case  we would have P~=Pl(O,  ~?oo)PoO?)/PoO?oo), and such a dependence contradic ts  the in-  
t eg r a l  equat ions (3.55. 

The exp re s s ion  (4.55 fo r  the function k 1 i s  complicated.  The re fo re ,  le t  us examine  in m o r e  detail  
the u l t r a -Ha l l  mode  in which a0--* r and ~-* ~o. We will a s s u m e  that ~?-~?00>> a0-1>>a0 -2, so that the effect  
of the conditions a t  the channel en t rance  can be neglected.  In this case  k 1 has the f o r m  of (2.55: 

'0 + d a/.Q (~t), Q (0j1) (4.6) g~ (o, ~) + g~_ (o,~j) = - -  t~'o [,Oo (n) c/] -~ p~ ~ = 

gi (0, ~l - -  t/ao) + g~ (O, q + t/ao) exp (ao) = Q(O, ~l)- 

F r o m  this we have, approx imate ly ,  

g l  ( 0 ,  ~ )  ~ Q (0 ,  ,rl5 (4.7) 

g2 (0 ~l) ~ ao -I  exp ( - -  ao) OQ/O*t 

In the v a r i a b l e s  (t, 7, r we have 

koVl(t,~l) + koexp[a0(*--5)](0 1 0 ~Pl(t,n) (4.8) 
kl = ~o-E + ~ or/  Oo 01) PO (~1) CT 2 aocT 2 

Disca rd ing  the smal l  t e r m s  of o r d e r  a0 -2, we obtain 

l i 
.f kld~) = - -  koPi (t, ~])/poCT 2, y pid* : P i  (t, ~5/CT 2. (4.95 
0 0 

B y  in t roducing the function W(t, x), 

( ~ z )  - -  o w  (4 .10)  I vi x d~ : 0 W, .Pl  : _ _ V o . ~ x  ' 
.t" Vo -- ~ -b Vo P~ 2 
0 

we can sa t i s fy  the second in tegra l  equation (3.5). The f i r s t  g ives  an equation for  the function W: 
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~ + 2v~ o-DT-x + (v~ CT2) 02W + 2 Ovo ( OW + v OW ~ OW CT" d p0v0=0" (4.11) 
~ x  ~ Ox \ Ot o Ox ] Ox PoVo Oz 

Since the dis turbance Pl in the total p r e s s u r e  is caused by the given disturbance at the channel en- 
t rance ,  it must have the fo rm of a depart ing wave. It is seen f rom (4.11) that for  short-wavelength d is tur -  
bances with a wavelength small  in compar ison with the scale of the variat ion in the p a r a m e t e r s  of the ex- 
ponential flow the following relat ionship holds: 

W = w t-Slv0(~) + erl-'d0. (4.1~.) 
x0o 

The plus sign in front  of c T cor responds  to a depart ing wave. The singulari ty a r i s ing  upon the t r an -  
sition through the speed of sound c T is fictit ious and is  connected with the approximation used. A s imi la r  
s ingulari ty appears  in the analysis  of s teady dis turbances in the ultra-t-Iall approximation (see [1]). 

Let  us analyze the zone of t ransi t ion through the speed of sound c T. The la t te r  is included in the r e -  
gion under considerat ion if  ~ >> Vm2/CT 2. Using a Fou r i e r  t ransformat ion  with respec t  to t ime and expand- 
ing the p a r a m e t e r s  of the exponential flow near  the transi t ion point x T by powers of x - x  T, we obtain the 
following equation for  the F o u r i e r  component s(w, x) of the function W(t, x): 

0x~ "6 a 0--~- -6 [~ s = 0 (4.13) 

i.e., 

~, ---- ( x - -  XT)/L, a = (vm/L --- 2io) L (2v,~) - i ,  ~ -~ - -  (2ivm/L 6 o) L%) (2CrVm) -1. 

A solution which is  valid nea r  the t ransi t ion point is  the function 

s=so( o) ) exp (--~./~), (4.14) 

W = S So (r exp [io)t - -  ~ /~ l  do. (4.15) 

F a r  f rom the point of t ransi t ion through the speed of sound, i .e. ,  when v 0 >> c T and dv0/dx-* 0, the 
function W has the fo rm (4.12), and one can neglect  the value c T in the denominator of the expression in 
the integral .  F r o m  this analysis  i t  follows that when a source  of t rans ient  dis turbances  is turned on at the 

x ~  

channel entrance the t rans ient  flow is establ ished af ter  a t ime interval  ~ ,,~ % - S d~/v o (~), where x m c o r -  
xae 

responds to the exit f rom the channel, and for an exponential flow one can set  xm-*  r When the source  
of t ransient  d is turbances  is turned off the steady flow is established af ter  the same t ime interval.  

F r o m  (4.9) and (4.10) it follows that 

ow { (  o~ :'~ I d~ --5m" (4.16) 
oi ...... . -~o + vo / m ' '  0 

where 6m" is the dis turbance in the mass  flow rate.  Suppose that 6m" at the channel entrance var ies  suf-  
f iciently slowly - over  t imes  g rea te r  than the t ime of flight ~'0 of an ion through the channel. In this case, 
since the plasraa does not precipi ta te  onto the wails, one can consider  the value of 6m" to be constant along 
the channel and neglect  the second time derivat ive of the function W in Eq. (4.11). As a resul t  we obtain 

~r~. d%~ p, ( ~ 0  ~~ p~ (4.17) 

Hence, 

~ = -_--'7- poc~ x T 

Substituting the p a r a m e t e r s  of the 

P1 26m" 

~0r m" 

In the general  case the value 5m" 

dg d% 2 {id~(c~dpo/d~--PoVodvo/d~ '} 
Vo2(O)-_c 2 - ~  exp P0(~) [V02(~I) -62] 

exponential flow, f rom (4.18) and (4.9) we obtain 

(4.18) 

' v~.~ 6m" (4.19)  I P ,  ~ 26m" .f ~ dr m" 
.f~7 d e -  m- - - 
-0 0 

is  descr ibed  by the same equation (4.11) as  the function W. 

19 



5. L e t  us  c o n s i d e r  the c a s e  in  which the va lue  of k 1 a t  the channel  e n t r a n c e  does  not  depend on t i m e ,  
but the in i t i a l  funct ion k (~ (7, @) i s  d i f f e r en t  f r o m  z e r o  (and does  not  s a t i s f y  the  c o r r e s p o n d i n g  s t e a d y - s t a t e  
equat ion) .  The  condi t ions  on the funct ion k 1 can be f o r m u l a t e d  in the f o r m  

k 1 (t, ~loo, •) = 0, /,'l (0, ~l, ~) = k(~ 0], ~) (5.i5 

/,'1 (t, ~1, O) = l,'a (t, ~1, l) = - -  t,.oP ~ (t, ~l)/PoC~. 

In th i s  ca se  Pl( t ,  700) =0 and k (~ (7, 05 =k  (05 (7, 1) = - k 0 P l ( 0  , ~) /P0e~.  I f  k (~ =0,  then P i  = 0 and k l ( t  , 
7, r =0.  The  d i s t u r b a n c e s  k 1 and P1 a r e  the r e s u l t  of the funct ion k(~ @5 be ing  d i f f e r e n t  f r o m  z e r o .  
F r o m  (5.1) i t  fo l lows  tha t  k(~ @) =0.  If  a f t e r  a c e r t a i n  t i m e  has  e l a p s e d  the funct ion  k 1 c e a s e s  to d e -  
pend on the  c o n c r e t e  f o r m  of the funct ion k (~ then th i s  m e a n s  tha t  s t e ady  flow h a s  been e s t a b l i s h e d .  

The  so lu t ion  of Eq. (1.15) with the  condi t ions  (5.1) i s  found with the he lp  of  a L a p l a c e  t r a n s f o r m a t i o n  
with  r e s p e c t  to t i m e ,  and  fo r  u n d i s t u r b e d  exponen t ia l  f low i t  has  the f o r m  

. 0 ao ' 0 X e x p  - - ~ - p - - - ~ -  +G(B--F, I - -~p ) F(0,  bt)exp - - ~  ~ 4- 

+ . = l ~ ( - - t ) ' e x p [ ~ l ( •  X ,  . 

[ i  ( ) y, k(~ (ull, ~.) exp - -  ~ ~ cos nn (~, + 1 - -  ~p) d~ + 

1 (~176 + .1' k(~ (• ~) exp - -  -~- ~ cos ~n (~ + t - -  k) d~ - -  
r 

l 

- -  'i" k(~ (• k) exp ( - -  % o  -5- k) cos nn ( * - - t  + k) d,.I [ln[ B (~o~-- , o o ) , o o  ( ~  -- ,)  ~m2t], (5.25 

~l~ e x p  ( - -  2 t / v . ~  5 L 
• (t, ~) = ~ - ~ [t - ~xp ( -  '~t/T,J 1 , ~ = ~,~. (5.3) 

H e r e  I i s  a uni t  funct ion which i s  equal  to z e r o  f o r  nega t ive  a r g u m e n t s .  One can a s c e r t a i n  tha t  the va lue  
of n~? depends  only on 0. 

The  l a s t  t e r m  in Eq. (5.2) i s  i n t e r e s t i n g ;  i t  i s  r e d u c e d  to z e r o  when ~t~7=~700, i . e . ,  when 

*~ n (~loo -- noo) (5.4) 
t = t o 0 1 )  = --~ In ~oo ( ~  -- ~1)" 

When t>t0(~/) the so lu t ion  a t  the g iven  point  ~7 c e a s e s  to depend on the c o n c r e t e  f o r m  of  the  funct ion 
k(~ r i .e . ,  s t eady  f low i s  e s t a b l i s h e d  in the  given c r o s s  sec t ion .  The  to ta l  t i m e  i t  t a k e s t o  e s t a b l i s h  
the  flow in  the  channel  i s  

4 
T~ %, (5.5) % = to 0lm) = -~- In 2 ", 

2c T Vo-(Xo,) 

[we a s s u m e  tha t  V~n>> c~  and v~a>> vZ(x00)]. I t  i s  s een  tha t  ~" 0 i s  the t i m e  of f l ight  of  ions  th rough  the c h a n -  
nel.  

F r o m  the d i s c u s s i o n  p r e s e n t e d  in Sees .  4 and 5 i t  fo l lows  tha t  the  f low in the channel  i s  e s t a b l i s h e d  
in a t i m e  on the  o r d e r  of  the t i m e  of f l ight  of the p l a s m a  (ions5 th rough  the  channel  (the r eg ion  occup ied  by 
the  m a g n e t i c  f ield).  The  flow i s  s t ab le .  Th i s  i s  connec ted  with  the f ac t  tha t  the  conduc tance  of  the p l a s m a  
was  a s s u m e d  to be cons tan t ,  and  the condi t ion tha t  the v e c t o r s  V p and V P  a r e  p a r a l l e l  i s  s a t i s f i e d  fo r  the  
u n d i s t u r b e d  f low. 

i. 

2. .... 
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