TRANSIENT MINOR DISTURBANCES IN FLAT
STREAMS OF A HIGHLY CONDUCTIVE PLASMA
IN A CHANNEL

A. P. Shubin UDC 533.9

Transient magnetohydrodynamic disturbances of flat streams of a highly conductive, non~
viseous, thermally nonconductive, quasineutral plasma in a channel of slowly varying cross
section with sectioned electrodes are analyzed in a linear approximation. The influence of
the Hall effect is taken into account in the analysis. It is shown that the evolution of a dis-
turbance in the isomagnetic parameter B/p is comprised of transport along the channel to-
gether with the plasma stream, transport along the undisturbed electron trajectories, and
diffusion due to the finite conductance of the plasma. The time of establishment of the flow
is equal to the time of flight of the plasma through the channel (the region occupied by the
magnetic field). The present report is a generalization of the analysis of steady distur-
bances conducted in [1].

1. A considerable number of works have been devoted to transient flows of a plasma. This is ex-
plained by the necessity of the analysis of processes of plasma acceleration in pulsed systems, the clari-
fication of the possibility of establishing flows in steady-state accelerators, and the analysis of problems
of the stability of steady flows. We shall consider low-frequency transient processes which do not disturb
the quasineutrality of the plasma and are subject to a hydrodynamic description.

The analysis of transient flows has been performed by different authors without allowance for the
influence of the Hall effect on the flow. The transient one-dimensional acceleration of a plasma with a
constant conductance was analyzed in [2]. It was shown that allowance for the three-dimensional distribu-
tion of the electric current leads to a flow which differs strongly from that calculated on the basis of the
model of a current layer. With slow variation in the characteristics of the discharge the effect of the ini-
tial conditions on the flow is important for times shorter than the time of flight of the plasma through the
channel.

The authors of [3], in which a numerical calculation was made of the two-dimensional flows of a
plasma with a constant conductance without allowance for the Hall effect, came to an analogous conclusion
concerning the establishment of flows in a time on the order of the time of flight of the plasma through the
channel. If the transfer coefficients of the plasma depend on the temperature, then the situation can change:
short-wavelength hydrodynamic oscillations in a plasma stream can prove to be unstable.

A nonlinear numerical calculation of the one-dimensional acceleration of a plasma performed in [4]
shows that if the conductance of the plasma increases with an increase in temperature, then the initial con-
ditions have a considerable effect on the nature of the flow. I the current is initially distributed in a nar-
row layer, then a self-sustaining current T-layer with high conductance and temperature develops as a
result of the heating of the plasma by the current. Two shock waves propagate from the site of formation
of the T-layer; the wave moving toward the channel entrance can, by heating the plasma, cause the forma-
tion of a second T-layer, and so forth. As a result the discharge current is concentrated in several T-
layers, and the accelerating plasma is distributed along the channel in the form of clusters following one
after another. '
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g \i_/ Making allowance for the Hall effect can also lead to the loss of
; stability of plasma flows. A numerical calculation of two-dimensional
: _’/", flows with allowance for the Hall effeet [5] showed that during flow in
® g ] a channel with continuous metal walls — the electrodes — stability is .
lost when the exchange parameter [6] exceeds a critical value which
\z} depends on the ratio of the gaskinetie and magnetic pressures and on
po the magnetic Reynolds number. A theoretical analysis of the stability
/—\ of short-wavelength oscillations in Hall flows [7] predicts the insta-
Fig. 1 ’ bility of flows of a perfectly eonductive plasma if there exist regions

in which the vectors of the density and the total pressure (gaskinetic
and magnetic) of the plasma are not parallel.

The purpose of the present report is the generalization to the case of transient disturbances of the
analysis of steady weakly disturbed Hall flows of a plasma in a channel with sectioned electrodes which
was performed earlier in [1]. The disturbances considered in [1] were due to the slight imperfection in
the cutting of the electrodes and considerably altered the flow pattern in the presence of a strongly ex-
pressed Hall effect. It is interesting to examine the case in which, in addition to the disturbances caused
by the imperfection in the cutting, there exist disturbances caused by transient irregularities at the en-
trance to the channel. This is possible, for example, when there are slight deviations in the mode of sup-
ply of the working substance.

" Let us consider a flat plasma flow in an infinitely long channel in the presence of an intrinsic (pro-
duced by the discharge current) transverse magnetic field B (Fig. 1). The vector B is oriented along the
z axis, while the vectors of the plasma velocity v, the electric field strength E, and the electric current
density j are located in the xy plane. All the parameters of the flow depend on the coordinates x and y and
the time t; the width of the channel in the direction of the z axis is considered as infinite. We will analyze
the flow of a fully ionized, quasineutral, nonviscous, and thermally nonconductive plasma. We will assume
the conductance ¢ of the plasma to be constant, and we will neglect the inertia of the electrons. With these
assumptions the flow is described by the following system of equations:

Y (Fat"'i‘ UV)U = -—VP, —g—? + divpv =0 (1.1)
i _ v o M
& =E+ 2B+ (VP —vp)
B 1 0B bi.
P =pi+p.+g7 r0tE=———p, rotB:%J

divB =0, pi=pi(p), p.= p. ().

Here p is the plasma density, and p; ,e aTe the gaskinetic partial pressures of the ion and electron
components of the plasma, which we assume to be polytropically dependent on the density p.

Let us consider a channel of slowly varying cross section, in which the following conditions are
satisfied:

d d
Ioy] <€ vl ]'aTF vy <<l-m—ux (1.2)
We will assume that the magnetic Reynolds number Rey, is large,
Re,, = uL/v,>1 (v, = ¢%/4no), (1.3)

where u is the characteristic longitudinal velocity of the plasma, L is the characteristic longitudinal scale
of the length in which the flow parameters vary significantly, and v, is the magnetic viscosity of the plasma.

Let us assume that the radius of curvature r of the plasma streamlines yy(t, x), which are determined
by the equation

Ayl 0=yl vy, (1.4)
is large compared with the ionic Larmor radius A,
r>A (A=Mcv,/eB). (1.5)

When the conditions (1.2), (1.3), and (1.5) are satisfied one can neglect the transverse component
(along the y axis) in the first equation of (1.1), as well as the terms jy/o and (M/ep) (9P/9y), in compari-
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son with the Lorentzian term v¢xB/c in the y-component of the third equation of (1.1). Consequently, in this
approximation we obtain the following system of equations in place of (1.1):

p (%— + vv) Uy = — ?—P%—g-i)j, ap + divpv =0 (1.6)
Vy, OB op  9p;(p)
~ oy = Ex Ay 1 (ax r )
B
0=E, _2__1”_ "”e (®)

B2
P(t,z) = pi(p) + 0. () + 3>
9E oF, 1 B

dy oz ¢ at°

Differentiating the third equation of (1.6) with respect to y and using the second, fourth, and sixth
equations of (1.6}, we find

Ymd*B _ p (8 )ﬁ__i”_é"_ﬁf_ (1.7
—_ _a_t. v .

e W ¢

For a perfectly conductive plasma without allowance for the Hall effect it follows from (1.7) that

—_— =0,

dt p
i.e., the fact that the magnetic field is "frozen" into the plasma.

Let us consider small transient disturbances in the main steady quasi-one-dimensional flow of a
plasma in a channel with sectioned electrodes. We will take the width of the sections as infinitely small.
The parameters of the undisturbed flow (denoted by the subscript 0) are described by the equations

2

5 k M (dp; (0
Py (z) = p, (p) + &—10, Po = Qoo (2) — =2 ym- — = g' __1631_ (1.8)
2 d M dp
B Yy Qg0 _ )
—‘-)": = k, = const, -+ % Qg (2) = const, dz epy dz

Ey=—v@e By=By(2), po=0,(x), vy =1, ()
PgVof = m* = const.

Here v, is the x-component of the velocity vy, f(x) is the width of the channel, and m"* is the mass
flow rate per second of the working substance (the plasma). The normalized stream function y is deter-
mined by the equation

¥ = 0glo [y — yu (2)]/m, (1.9)
where y (x) is the profile of the channel cathode, so that 3 =0 at the cathode and y =1 at the anode.

Let us change from the variables t, x, y to the variables t, x, . By linearizing the first and fifth
equations of (1.6) we find

a9, . 5D
Po ( T ”0”“7) TP 6“‘ =5 (1.10)
1 (t! .2!) = cTP]_ + BoBll“ﬂT (C'T = dpo/dpo) (l.ll)

From the second equation of (1.6) it follows that
dpy/8t + div (pyvg + pyvy) = 0. . (1.12)

A disturbance in the isomagnetic parameter k=B/p will be defined as k,. Then we have

. — B b1 (1.13)
Fy Po — 00
From (1.11) and (1.13) we obtain

P1/pe = Px/()ocH2 — kg (ealen)? {1.14)

BBy = P1/PQC%(1 + Eyfky (cricn)?

2 2 2 2 2
ey =cr 4 cay €4 — By ldnp,.
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By linearizing Eq. (1.7) and using (1.14) we can find an equation describing the evoluuon of the dis-
turbance in the isomagnetic parameter:

0ky 4 kg | Ok 3k (1.15)
P - oma T Mg
- ety [ T\ dy Q
9=_vm~,‘;7"(;§ D T (1.16)
Mc_(¢a \*dP,
a () em'B ("'H) dn =0

Equation (1.15) is a generalization to the transient case of the steady-state equation obtained in [1].

2. Let us analyze the evolution of small disturbances in the isomagnetic parameter. Changing from
the variables t, 1, 3 tothe variables g, 1, 3, where ¢ is determined by the equation

PR AT S -
e__t__;f %) —t_ﬁf 2@ . @1

(we assume that at the channel entrance, i.e., at x =xg, the velocity v, is different from zero, so that gis
finite everywhere), we obtain

azk]_ _ ak]_ akl
= e (2.2)
The variable g enters into Eq. (2.2) as a parameter. From this and from the definition (2.1) it fol-
lows that a transient disturbance k; is carried along the channel by the plasma stream. If the electron
stream function y, is introduced by the equations

Veo = Vo — Mjo/epg, PaVeo = m yip.Xn, (2.3)
(n,, is the unit vector in the direction of the z axis), so that
B, = dnem’ (¢ — )/ Me,

then one can ascertain that the operator 8/dn-+ad/d ¢ on the right side of (2.2) corresponds to the differ-
entiation operator along an undisturbed electron trajectory p, = const. With a perfectly conductive plasma
(o= =, vy, = 0) we obtain

=k, (0, 1pe)- (2.4)

The left side of Eq. (2.2) describes the diffusion due to the finite conductance of the plasma. The
evolution of the disturbance k; is comprised of transport together with the plasma stream, transport along
the undisturbed electron trajectories, and diffusion due to the finite conductance of the plasma.

Equation (2.2) with a =a,=const was analyzed in [1], where it was shown that in the case of weak in-
fluence of the Hall effect (a—0) the disturbances penetrate from the electrodes into the stream like a skin
(the thickness of the skin layers is determined by the diffusion of the plasma in the magnetic field); in the
case of a strongly expressed Hall effect (@ — «) the function k; has the form

Ey = g, (0, N — Ylag) + g2 (8, M + P/ay) exp (agh). (2.5)

The dependence (2.5) signifies that the disturbances are transported along the electron trajectories
from the cathode to the anode and an electromagnetic layer is formed near the anode.

3. Let us examine the integral equations. By integrating (1.10) with respect to 3 from 0 to 1 we ob~
tain the first integral equation

\

1
[7] a 1 4P d
(% + v m)voq s d¢_—vo(p 0Py | odgo_ggl_dq,). (3.1)
0 0

From the continuity equation (1.12) we find

6oy, m . p1 , i Polyy V. | Tyx dp, 3
i [(at + v, ax) + — 4 2o (3.2)

aF . Do 00 Oz m b 0y dz

At the channel walls y=y_(x) ( =0) and y=y, (x) ( =1) the following conditions are satisfied:
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in‘l;___o = vx\¢=0dy._/dx, (3-3)
Uylp=t = Uxlp=1dy+/dx.

By integrating (3.2) with respect to § from 0 to 1, using (3.3) and the equality

9 PPy . 1 dpeve
W o Poto  dz
we obtain the second integral equation
1 1.
a a " Pr a ¢ Ui _
(W'“’O 5;>-§,_P;d¢+0075-§ o dip = Q. (3.4)

Substituting the value p/p, into (3.1) and (3.4), from (1.14) we have

1 P / \2 1
9 a\ 2pf Ya o0 | 1 0P, Lo dy, - Ca vy ¢ ky (3.5)
(_67 + % 5:?) Yo g‘ 7 dp = —uv, [ P 0z + Pocty V0 T ey ) ey ( ]Ta'd‘P
0 / 0 .
1 N2 1
3 Y1x ( a i ) P Ca ky
Vps— |\ —dPp= —l— 4+ vy = 1 — “2dy |.
0 o b,( Uy v at 0 9z i P cH b( ‘o ilp

Equations (3.5) make it pogsible to obtain an equation connecting a disturbance P; and the value

1
(kidyp . If the latter is known then Py(t, x) is determined from the equation obtained.
0

4. Let us consider further the exact solution and the ultra-Hall mode. The steady disturbances
analyzed in [1] satisfy the equations

1 Us ..

(‘(Pl + .“)dtp=0 (4.1)
J A\ Pe Up

0

2 9 p Uiy dvg b op, 1 9P,

Z“axu\vo d¢+v°drb A _dlp—’—pD 9z

We will assume that the sections are weakly short-circuited through purely ohmic resistances and
that the current through each respective pair of sections (anode—cathode) is constant and does not vary
with time. In [1] itis shown that in this case a disturbance By in the magnetic field at the electrodes is
stationary. Since the transient problem is separated from the steady-state problem, one can, without, dis~
turbing the generality of the analysis, confine oneself to the consideration of purely transient disturbances;
in this case the disturbance By is reduced to zero at the electrodes. The conditions on the function ky(t,

7, ) have the form .

iy (8 Mooy ¥) = £(L 0, By O ) = kO () (4.2)
]’.1 (t’ TL O) = kl (t1 n’ 1) = ——kOPI (tv TI)/Pon

Let us discuss the case when k(® (5, $)=0. In this case g(0, ) =0 and P,(0, 1) =0. As the undisturbed
flow we choose the case of exponential flow a =g, =const analyzed in [1]. Its parameters have the form

2y = Um th (z/L), 0= 0, (0) (1 — v’ {vh), By = kepy (4.3)
§ = agNe = Mc|B, (0))/amem', v = n, th?(z/L)

tm = |By (0)] 2710y (0)1-172, ¢f = const<< e}
_ 2% ch3 (/L) _ 2T L [ Vi N[ ep)?
/() SVEsh@L) T AT ( / ) (Z) '
M -
= —{% z=const T > Ty >0,
9, (0) = pg (Zgo) [1 - UOZ (xoo)/vmz] ~l:
By (0) = kopy (0).

wT

Here w7 is the Hall parameter, ¢ is the exchange parameter, and ¥ is the width of the channel at the
critical (vy=cy) cross section. The true exchange parameter £ =I3/1,, is determined by the expression
£ =Mec|Bytxg) | /4rem, i.e., when vy(xgy) < vy, it differs little from the expression presented in (4.3). Since
7, does not depend on the Hall parameter, large values of ¢ correspond to large values ay=2. The as-
sumption that c?-r « c.%& is observed when
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0 < MMew < N/ Mow = 1 — 7%/ (4.4)

Since we are assuming that the velocity at the channel entrance differs from zero, in Egs. (4.3) one
must set X =Xy, =0, i.e., 1=17y> 0, where values at the channel entrance are denoted by the subscript 00.

When k{® (5, ) =0 the solution of Eq. (1.15) with the conditions (4.2) has the form

Fy = — ky £2(8: Too)

+ ex fﬂw—in i]d X
0 po(ﬂoo)“% P 2 4 : w2

Yoo
’ a 2
0

X [G(n—u,w)(%ﬁ’(e,u)exp(—;u——”zi) +
2 a3
+GM—p, L —)5- F (6, p) exp Tu) +

oo a2 1
+2 5 exp [ og—m (sn + ) inn {5 0,8 +

n=1 0

Py (8, 1g0) a .
k, m] exp [T" (P — Q)] sin nnfdf. (4.5)

Here

G, P) =+ 2 i (— 1) ST oo h (— m2ntn)

an
n=1

. n
F®,p)-- o | 21(6, nos) —P, (e + |
’rl.

J -1
0%1 Po (Moo) dv/Q (v), p ){Po (w1 }

0 7

and the functions g(4, ) and Py(6, n) are reduced to zero when §=<0. It follows from (4.5) that the influ-

ence of the conditions at the channel entrance on the nature of the solution is important only when 0<<n —
oo < (2 + a’4)™ | Ata given 6 the function k; is essentially two-dimensional, i.e., it depends on n and .
One would think that if [g(6, ) = —kyPy(8, 190) /po(nop) cF» then a solution ky=—kyPy(8, ng9)/pg - M) cT? Would

exist, but in this case we would have P;=Py(6, 1g) po(n) /po{ngy), and such a dependence contradicts the in-
tegral equations (3.5).

The expression (4.5) for the function k, is complicated. Therefore, let us examine in more detail
the ultra~Hall mode in which ay— « and ¢ — . We will assume that n—=ny> ay~'> ay™%, so that the effect
of the conditions at the channel entrance can be neglected. In this case k; has the form of (2.5):

I /n \
£.(0,m) + g (0,m)= — ko [0o () cx”] * Py ( 0+ | dw/Q(w), n) =Q (0. (4.6)

\ Meo /
g1(0,n—1/ay) + £:(8, 1 + Vay) exp(a,) = Q (8, m).
From this we have, approximately,
g8, M) =~Q(0,7) (4.7

g 0,n~ ag "t exp (— a,) Q/dn.
In the variables (t, 1, ) we have

__ kePatt.m) + ko exp [a, (b — 1)} ({3_?]_ + 1 _a%_)Pl(tv Ui (4.8)

P e (M eyt P Q) T

Discarding the small terms of order ao'z, we obtain
1 5
[ kydtp = — koPy (¢, )fpocr™s [ prdth = Py (6, m)/er™s (4.9)
) 3 .

By introducing the function W(t, x),

— == e Yy s
U 23 " pacg? 0 6z

Lo a ] P oW
3 RIE =(a—t+”o )W L (4.10)
0

we can satisfy the second integral equation (3.5). The first gives an equation for the function W:
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dr pguy Ox

i W 2 2y 2W vy (OW oW
VoG + 00’ —er’) G + 22T 00 ) —

2
S 0 Siam povy=0. (4.11)

Since the disturbance Pj in the total pressure is caused by the given disturbance at the channel en-
trance, it must have the form of a departing wave. It is seen from (4.11) that for short-wavelength distur-
bances with a wavelength small in comparison with the scale of the variation in the parameters of the ex-
ponential flow the following relationship holds:

W=Ww (z — [ 17 () + exl=1d). (4.12)
The plus sign in front of ¢ corresponds to a departing wave. The singularity arising upon the tran-

sition through the speed of sound c is fictitious and is connected with the approximation used. A similar

singularity appears in the analysis of steady disturbances in the ultra~Hall approximation (see [1]).

Let us analyze the zone of transition through the speed of sound ¢g. The latter is included in the re-
gion under consideration if £ > vmz/cTz. Using a Fourier transformation with respect to time and expand-
ing the parameters of the exponential flow near the transition point x by powers of x—x , we obtain the
following equation for the Fourier component s(w, x) of the function W(t, x):

azs as
homtag +hs=0 (4.13)

A= (@x—zp)/L, &= @nl=2i0)L20,)", B=— (2ivyL + o)L (2cv,)—
A solution which is valid near the transition point is the function
s=s,{®) exp (—fMa), {4.14)

i.e.,
W= T so(0) exp liot — ph/al do. (4.15)
Far from the point of transition through the speed of sound, i.e., when vy > ¢ and dvy/dx— 0, the
function W has the form (4.12), and one can neglect the value cy in the denominator of the expression in
the integral. From this analysis it follows that when a source of transient disturbances is turned on at the

X,
channel entrance the transient flow is established after a time interval v~ 1, = fm dt/v, (7)), where %y, cor-
Xgo
responds to the exit from the channel, and for an exponential flow one can set xm— ©. When the source
of transient disturbances is turned off the steady flow is established after the same time interval.

From (4.9) and (4.10) it follows that

W _ f(ﬁl_ + iiz.) ap = ~ (4.16)

ot J APy Uy m’
0

where ém-* is the disturbance in the mass flow rate. Suppose that ém- at the channel entrance varies suf-
ficiently slowly — over times greater than the time of flight 7, of an ion through the channel. In this case,
since the plasma does not precipitate onto the walls, one can consider the value of 6m* to be constant along
the channel and neglect the second time derivative of the function W in Eq. (4.11). As a result we obtain

2 2 .
dm-_ 47 Py (”T dp, dvn)_ W22 9 Py, (4.17)
— Il —22 2=V —CT) .
m*  dx + Po"'[‘z \ Po Oz 0dzy ( iz poc% .
Hence,
Py bm jf a vy exp || dp(cFdpe/du — pyvadvyldp) (4.18)
poed ™) ot @—cf BTN pe(w) [vg (0 —cf]

xr

Substituting the parameters of the exponential flow, from (4.18) and (4.9) we obtain

Py 2%m gy V~26m- T PO {(4.19
frapati,  foegpo te )

A ———
2 ? m* J Ty m*
0

PocT m

In the general case the value 6m- is described by the same equation (4.11) as the function W.
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5. Let us consider the case in which the value of k; at the channel entrance does not depend on time,
but the initial function k(®) (n, p) is different from zero (and does not satisfy the corresponding steady-state
equation). The conditions on the function k; can be formulated in the form

ke (8,000 W) = 0,y (0,7, ) = k(O (1, ) (5.1)
by (6,0, 0) = Iy (£, 1) = — Eo Py (8, gt

In this case Py{t, ngy) =0 and k{9 (5, 0) =k(® (5, 1) = =k,P,(0, n/pock. I k(® =0, then P,=0 and k(t,
n, ) =0. The disturbances k; and P; are the result of the function k(n, y) being different from zero.
From (5.1) it follows that k(®(ny,, ) =0. If after a certain time has elapsed the function k; ceases to de-
pend on the concrete form of the function k("), then this means that steady flow has been established.

The solution of Eq. (1.15) with the conditions (5.1) is found with the help of a Laplace transformation
with respect to time, and for m;disturbed exponential flow it has the form

/ a2 \"
ke, =exp (%‘P“TO 7])‘ dM[G(n—“"p)a—z—F(e’“) X
N

4
[ agt a, a [ ag?
s exp( 2w — 52 | +6—, 1) ;- F @ exp| ) | +

© 2

+ 21 (—1)rexp {'q (x—1) (n2n2 + f—z—\) + —%"-1})] X
«\b .

X \ kO (%, A) exp (~% ) cosmn (M + 1 —¢)dh +

4

0

1
+ | kO Gen, 2) exp (— % x) cosnn (p + 1 — Ay dh —
¥

1 ) —
— s £9 (n, 1) exp (— %"- l) cosnn (Y —1 + A)dal [ln H —_ TZ_‘], (5.2)
[ ' 00 { o ™ m
. . Too XP <— 2ﬁt'm,) L
w(tm) = Mo — N {1 —exp (— 2¢/1,)]’ Tm:u—m- ‘ (5.3)

Here I is a unit function which is equal to zero for negative arguments. One can ascertain that the value
of »n depends only on 6.

The last term in Eq. {(5.2) is interesting; it is reduced to zero when uy =1, i.e., when

1 (o — o) (5.4)

Tm
= to (’I’]) =—'2‘lnm.

When t> ty(n) the solution at the given point 5 ceases to depend on the concrete form of the function
k(o)(n, ), i.e., steady flow is established in the given cross section. The total time it takes to establish
the flow in the channel is '

T v*
== fy () = —2Ip —r 2 (5.5)
Ty o (Nm) 5 i ZCTZE'OZ(xM)
[we assume that v > ok and vi, » vi(xg)]. Itis seen that 7, is the time of flight of ions through the chan-
nel.

From the discussion presented in Secs. 4 and 5 it follows that the flow in the channel is established
in a time on the order of the time of flight of the plasma (ions) through the channel (the region occupied by
the magnetic field). The flow is stable. This is connected with the fact that the conductance of the plasma
was assumed to be constant, and the condition that the vectors V p and VP are parallel is satisfied for the

undisturbed flow.
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